
LoveStory
A Visual Novel Library for LovePotion on the Nintendo Switch

1. Introduction and License

1.1 MIT-License

2. Features

3. Game Controls

4. Folder-Structure and Data-Specifications

5. Code Dokumentation

5.1 Contents of “main.lua”

5.2 Contents of “novel.lua”

5.3 Characters

5.4 Dialogues

5.5 Decisions

5.6 Background Images and Music

6. Known Bugs and Future Improvements

7. Thanks and Acknowledgments

1. Introduction and License

LoveStory is a VisualNovel library for LovePotion on the Nintendo

Switch. LoveStory’s purpose is to simplify the creation of VisualNovels

as well as the integration of a simple to use DialogueSystem for story

driven games for Nintendo Switch.

LoveStory may only be used with LovePotion for Nintendo Switch.

LovePotion is a Nintendo Switch port of the LUA based game engine

Love2D by TurtleP.

LoveStory runs under the MIT-License:

This means LoveStory is completely OpenSource. You are allowed to

use it in all kind of projects and you are free to modify all contained

files, but I will not be responsible for anything that is produced or

used in relation with this library. You can find the MIT-License in the

next chapter.

I would be very happy if you mention me somewhere in your game’s

credits if you used this library 

LoveStory was initially created by Shrike in 2018, so was this

documentation.

More Information about LovePotion for Nintendo Switch:

https://github.com/TurtleP/LovePotion/releases/tag/switch-1.0.0

https://github.com/TurtleP/LovePotion/wiki

More Information about Love2D:

https://love2d.org/

https://love2d.org/wiki/Main_Page

https://github.com/TurtleP/LovePotion/releases/tag/switch-1.0.0
https://github.com/TurtleP/LovePotion/wiki
https://love2d.org/
https://love2d.org/wiki/Main_Page

1.1 MIT-License

Copyright 2018 Shrike

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including without
limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to
whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
OR OTHER DEALINGS IN THE SOFTWARE.

2. Features

 Easy to use dialogue implementation for the creation of

VisualNovels or other story-driven games

 No fancy programming skills needed to create VisualNovels with

the help of this library

 Changeable character pictures for emotions and clothing-sets

 Decision making for complex story-lines and multiple endings

 Two characters can be shown the same time

 Complete touch-support for easy game control

 Dialogue boxes can be hidden with touch-swipe or joycon-input

 Sound and music support: You are able to create full dubbed

versions of your in-game conversations

 Easy managing of multiple characters thanks to character-classes

 Special character-screen when holding the switch in portrait-

mode, with a big picture and more character information shown

 You are able to show a background image with or without your

characters in front and easily change it anytime

 Skip all the current dialogue with only holding down the LZ-key

(shoulder-button)

 Future Updates: If the community has wishes for future

improvements or features I will try to implement them in one of

the next versions

3. Game Controls

Up/Down : Choose Decision

Left Joystick : Choose Decision

ZL: Skip Dialogue

L: Hide Textbox

R: Character-Description (FIX)

Touch:

 Choose Decision

 Accept / Next

 Hide Textbox (Swipe)

A : Accept / Next

Right Joystick : Choose Decision

4. Folder-Structure and Data-Specifications

In the picture below you can see the given folder-structure:

 game/backgrounds

 Insert background images here.

Name: <NUMBER>.png (example: 0.png)

Format: 1280x720

File: PNG

You can use game/backgrounds/bg_mask.png as template

to adjust your own background to the specification.

 game/bgm

 Insert background-music here.

Name: <NUMBER>.ogg

(example: 47.ogg)

File: OGG

Background-music will loop when started till stopped.

 game/characters

 Create a new folder for every new character.

Each character folder must contain /images/ and /voice/

 game/characters/NAME/images

 Add all images of that character here. This can be all

kind of versions with different facial expressions or

clothing

Name: <NUMBER>.png (example: 0.png)

Format: 640x720

File: PNG

You can use game/characters/character_mask.png as

template to adjust your own images to the

specification.

 game/characters/NAME/images/big_<NUMBER>.png

 Add all images for the description-window in this

format. The pictures should only contain the

character, and no info-text.

Name: big_<NUMBER>.png (example: big_0.png)

Format: 1280x720

File: PNG

Please be aware that this picture will be shown, when

the switch is hold in “portrait-mode”. Anyways you

have to turn the picture in 90°, because the draw

function only works in a horizontal way. Please follow

the example in one of the characters folders of the

demo-version.

You can use game/characters/description_mask.png as

template to adjust your own images to the

specification.

 game/characters/NAME/images/ description_text.png

 This image is the overlay of the description-window.

It should contain all information about your

character (example: Name, Age, Likes, Dislikes,

Backstory, …).

Name: description_text.png

Format: 1280x720

File: PNG

One character can only have one description_text.png

Please be aware that this picture will be shown, when

he switch is hold in “portrait-mode”. Anyways you have

to turn the picture in 90°, because the draw function

only works in a horizontal way. Please follow the

example in one of the characters folders of the demo-

version.

You can use game/characters/description_mask.png as

template to adjust your own images to the

specification.

 game/characters/NAME/voice

 Add all voice-sound-effects of that character here.

Name: <NUMBER>.wav

(example: 7.wav)

File: WAV

You can do a full voice acting of all dialogues if you

want. You can also add other sound-effects here like

explosions.

 game/lovestory

 This is where all internal lua files for running lovestory are.

Please do not edit any files here, if you just want to use

lovestory as it is intended.

If you are brave and you want to change lovestory

anyways feel free to do it, but I will probably give you no

support if something goes wrong 

 game/main.lua

 This is your main.lua file. It is the entry point for

LovePotion. To be able to use LoveStory you need to

config a few things here.

Please read chapter 5.1 for more information.

 game/novel.lua

 This file contains all the dialogues. If you want to write a

VisualNovel you will almost only need to edit this file.

 If you want to implement a dialogue-system for your

story-driven game, this is the file where all conversations

should go. Dialogues are saved as functions(). This means

you will be able to call them from anywhere in your game,

using the static class novel of this file.

Please read chapter 5.2 for further information.

5. Code Documentation

In this chapter I will introduce all configurations you will need to

make to run LoveStory and use it in your game. In addition I will list

every function available for you. This will help you to use the full

potential of LoveStory.

5.1 Contents of main.lua

Please add all the following things to your main.lua.

If you start a new project you can of course just use the main.lua of

the demo as it is perfectly configured already. Just delete the

“preloader” parts or use it to make your own preloader.

First thing you need to do is import the library using require.

Because LoveStory uses the 30log.lua library for implementing

classes, your first step will be to import 30log.lua. After that import

the lovestory.lua for all lovestory functionality.

In love.load() be sure to initialize the static novel class of LoveStory

with novel:setupLoveStory(lovestory)

You will need to add lovestory:update() in your love.update().

If you have other game-code to update, I recommend you check if

LoveStory is running a conversation, and wait till the LoveStory

dialogue is over (the player has read everything) before continuing

with the game-updates. You can do it like this:

This way every love.update() will just be skipped till the LoveStory

conversation is finished.

Next thing you need to do is forward all the joycon and touch inputs.

You do this always the same way with every function. You will need

to do this for following functions in the following way:

The last thing you need to do is to use LoveStory’s draw() function in

the main draw() function. Therefore, you just forward it like this:

Somewhere you need to open your first dialogue or conversation. If

you are building a VisualNovel, the love.load() would be a good place

to do this. That is why in the demo it is done like this:

Be aware, that novel:start() is no predefined LoveStory function. It is

just the name of the first dialogue-function for the demo. Basically

you can call it like you want. For example novel:myFirstDialogue().

You just have to create the function it in novel.lua.

5.2 Contents of novel.lua

Novel.lua is the file where all your dialogues go. This is the main file

you will working with when you using LoveStory to build dialogues

for your game. The usage is quite easy, there are only a few things

you need to know in order to build awesome dialogues with

LoveStory.

You should always create new dialogues right behind the above

shown commented-lines (green). As the text above already mentions,

you should write your dialogues in “parts”. These parts are

programmed as functions like in the demo-example:

The name of the function (here “myFunctionName”) is your free

decision and should match the plot of this part of the conversation

for easy managing of your story.

How you can use every of the available lovestory:functions() will be

explained in the following chapters.

Because of the way decision-making works, it is best to end the

dialogue-part as soon as a decision pops up. This is because the

outcome of a decision will probably start a new dialogue-part

depending on what the last decision outcome was.

One more important thing: If you call a new dialogue-part from inside

an existing dialogue part, you will need to define that called dialogue-

part BEFORE the calling dialogue-part uses it (see green text).

You can easy archive this, by creating new dialogues always on top of

all other dialogue-parts (so right beneath the green text).

In addition, every decision needs to be defined in the DECISION part

above the WRITE YOUR NOVEL HERE part. This way the decision can

be addressed from every dialogue, in case you want to use the made

decision answer as pre-condition for a later story path.

5.3 Characters

This chapter will explain how you can create characters and manage

them. This will concentrate on the code-aspects of character

creation. If you want to learn more about how to add images and

voice for a character, please read chapter 4.

Characters are created as follows:

The first parameter is the Name of the character, which will also be

shown in the top left of the text-box. The second parameter is the

characters own folder, which holds his image and voice files (see

chapter 4). Best is to name the character variable as the character

itself, for easy managing (tom = ….).

Character-Functions:

characterXYZ:setStyle(num)

 Default = -1 => No Image

This sets the characters image for emotion or clothing

changes. There parameter needs to be the number used

in the filename.

(images/3.png => setStyle(3))

If you want no character picture you can clear it with

setStyle(-1).

characterXYZ:setDescriptionImage(num)

Default = -1 => No Image

This sets the characters image for the special

character-description screen (portrait mode).The

parameter needs to be the number used in the

filename.

(images/big_3.png => setDescriptionImage(3))

characterXYZ:setName(name)

This changes the character’s name. But only his shown

name not his variable-name !!! You could use this if

you want a character to be unknown for the first part

of the game (like “???”).

5.4 Dialogues

This chapter will explain how to create dialogues.

Dialogues should always be defined in a dialogue-part-function in the

novel.lua file! One dialogue always represents one text-box screen.

The next dialogue begins when the player presses “A” on the joycon

or touches the screen.

Dialogue Functions:

lovestory:addDialogue(character,text)

 The easiest way to add a dialogue.

The parameters need to have a character (that defined

before the dialogue) and a text, which contains what

the chosen character should say.

You should be sure that the text fits the dimensions

of the textbox. The text should not have more than 180

characters. You have to make line breaks yourself by

using “\n” in the text-string after about 45

characters.

The textbox is big enough to show 4 lines of text.

lovestory:addEmptyDialogue()

 This adds an empty dialogue frame.

For one frame (till player presses “A” or touches the

screen) there will be no characters or textbox shown

on the screen. The background image will be shown!

This way you can implement events where you show

something in a full screen image while no textbox or

character blocks the view.

lovestory:addComplexDialogue(character,text,voice,secondCh

aracter)

 A more complex way to add a dialogue.

The parameters need to have a character (that defined

before the dialogue) and a text, which contains what

the chosen character should say.

You should be sure that the text fits the dimensions

of the textbox. The text should not have more than 180

characters. You have to make line breaks yourself by

using “\n” in the text-string after about 45

characters.

The textbox is big enough to show 4 lines of text.

In addition to that, you can add a voice file. The

voice parameter needs to be a number corresponding to

the wav file in the /voice/ folder.

With the secondCharacter parameter you can add a

second character, which will be drawn on the left side

of the screen.

5.5 Decisions

This chapter will explain how to create decisions.

Decisions must be created under the DECISION comment in novel.lua,

but it needs to be defined when you first show it.

When defining a decision you can add from 1 to 4 options for the

player to choose (yeah only one works, too ).

There is no way to cancel a decision, except you program one of the

options for cancelling!

This options can be combined with so called “callback functions”.

This functions will run when they are chosen. In theory you can add

every function you want (so maybe for advanced game-designers this

is something cool), but for now let’s just assume you use only other

dialogue-part-functions from novel.lua here.

This way you can control the flow your story takes. When the player

takes option1 he will get novel:apple() if he takes option2 he will get

novel:grape() and so on. Take a look at the example:

Be careful to type self.myDialogueClass with only a point and

no colon (!!!) and without the brackets “()” at the end!

This is because you give the function as a variable!

Of course, if you use “self” the target function must be placed in

novel.lua.

After the decision is added, you should end the current dialogue-

part, because the callback functions will make the story continue in

other dialogue-parts and so it makes no sense to add further

dialogue elements.

Decision Functions:

lovestory:addDecision(decision)

Adds a decision to the dialogue. You should end the

current dialogue-part, because the callback functions

will make the story continue in other dialogue-parts

and so it makes no sense to add further dialogue

elements.

optionCount = decisionXYZ:getOptionCount()

This function returns the number of options available

for the given decision.

optionText = decisionXYZ:getOption(i)

This function returns the text of option i for the

given decision.

answerNumber = decisionXYZ:getAnswer()

This function returns the number of the option the

player has chosen (1 to 4). If there was no answer

given until now, the function will return the number

0.

5.6 Background Images and Music

This chapter will explain how to create and change background

images and music.

By default the folders for music and background images will be

/backgrounds/ for images and /bgm/ for background-music, but you

can change them if you want with the corresponding functions.

You can read about the format and specifications of the files in

chapter 4.

Background Images and Music Functions:

lovestory:bgmChange(num)

 Default = -1 => No Music

This sets the current background music. The parameter

needs to be the number used in the filename.

(bgm/3.ogg => bgmChange(3))

The music will be looped until it is stopped, or the

music is changed again.

You can stop the music with bgmChange(-1).

lovestory:showBG(num)

 Default = -1 => No Image

This sets the current background image. The parameter

needs to be the number used in the filename.

(backgrounds/3.png => bgmChange(3))

If you want no background you can clear it with

showBG(-1).

lovestory:setBackgroundFolder(path)

 Default = /backgrounds/

You can change the default background-image folder to

any path you want.

lovestory:setBGMFolder(path)

 Default = /bgm/

You can change the default background-music folder to

any path you want.

6. Known Bugs and Future Improvements

Because LovePotion is still in development there is not yet every

function available I would need to build LoveStory as I would like to.

But I will continue to implement this functionalities as soon as they

are available.

Never the less I would like to tell you what is not possible at the

moment  …

 The Portrait mode and special character-description screen:

I planned, that the special character-description screen will pop

up every time you hold your switch in portable-mode in a 90°

angle. This way it would be ensured that you only could see the

picture shown the “right way”. Sadly, we cannot read the

sensors of the joycon-gyroscope now (at least with LovePotion).

In addition to that I wanted to make the text shown in the

character-description screen to be editable through code, but

we can not print text in a 90° angle at the moment. That is why I

decided to add the text as an additional png image instead of

text-objects.

However, as soon as these functionalities will come I will

implement them. Until then you will need to press the R-Key

(right shoulder button) to activate this screen and use the

“description_text.png” to edit the shown text. 

 The second character on left screen side

At one moment, I thought about implementing the second

character on the left side of the screen with an image-flip on

the vertical line, but LovePotion cannot do that at the moment

because of lacking GPU support of the switch.

I would have done that, because the character is then more

aligned to the side of the screen without using an extra image

or shifting the image an unknown offset-size to the left.

But after overthinking it, maybe a mirrored character picture

would irritate people even more… (?)

7. Thanks and Acknowledgements

This chapter is for all the people that motivate and help me in writing

things for Nintendo Switch and LovePotion. Thank you all for using

my stuff and reading through this whole documentation. I want to

mention some people here that helped me a lot, everyone in their

own way 

 The whole “Tiny Turtle Industries” Discord Server:

Thank you so much guys! You are just awesome! A great

community, and not only the LovePotion talk is great with you 

 TurtleP:

Dude you are so frkn awesome! You are porting Love2D to the

Switch, what is the basic of all this work! Moreover, you are

“technical support guy” not only for me, but also for most of the

other LovePotion developers, too. I could always ask you when I

needed help, and you always helped me.

 Mik:

Thanks again for the great artwork you made for my Snake-Port

(Version 4). Now the game finally does not look like garbage

anymore. Your design and art skills are badass! Keep up the good

work! 

 My coworker Max:

Talking with you about the switch hacking scene is always big fun.

When I show you stuff I programmed you are always interested

and give me new ideas. Work would be much more boring without

you dude! Thanks for that! 

