
CS2110 Summer 2015
Homework 08
Author: Clayton Pierce

Rules and Regulations

Submission Guidelines

1. You are responsible for turning in assignments on time. This includes allowing for
unforeseen circumstances. If you have an emergency let us know IN ADVANCE of the
due time supplying documentation (i.e. note from the dean, doctor’s note, etc).
Extensions will only be granted to those who contact us in advance of the deadline and no
extensions will be made after the due date.

2. You are also responsible for ensuring that what you turned in is what you meant to turn
in. After submitting you should be sure to download your submission into a brand new
folder and test if it works. No excuses if you submit the wrong files, what you turn in is
what we grade. In addition, your assignment must be turned in via T-Square. When you
submit the assignment you should get an email from T-Square telling you that you
submitted the assignment. If you do not get this email that means that you did not
complete the submission process correctly. Under no circumstances whatsoever we will
accept any email submission of an assignment. Note: if you were granted an extension
you will still turn in the assignment over T-Square.

3. There is a 6-hour grace period added to all assignments. You may submit your assignment
without penalty up until 11:55PM, or with 25% penalty up until 5:55AM. So what you
should take from this is not to start assignments on the last day and plan to submit right
at 11:54PM. You alone are responsible for submitting your homework before the grace
period begins or ends; neither T-Square, nor your flaky internet are to blame if you are
unable to submit because you banked on your computer working up until 11:54PM. The
penalty for submitting during the grace period (25%) or after (no credit) is non-
negotiable.

General Rules

1. Starting with the assembly homeworks, Any code you write (if any) must be clearly
commented and the comments must be meaningful. You should comment your code in
terms of the algorithm you are implementing we all know what the line of code does.

2. Although you may ask TAs for clarification, you are ultimately responsible for what you
submit. This means that (in the case of demos) you should come prepared to explain to
the TA how any piece of code you submitted works, even if you copied it from the book
or read about it on the internet.

3. Please read the assignment in its entirety before asking questions.
4. Please start assignments early, and ask for help early. Do not email us the night the

assignment is due with questions.
5. If you find any problems with the assignment it would be greatly appreciated if you

reported them to the author (which can be found at the top of the assignment).
Announcements will be posted if the assignment changes.

Submission Conventions

1. All files you submit for assignments in this course should have your name at the top of
the file as a comment for any source code file, and somewhere in the file, near the top, for
other files unless otherwise noted.

2. When preparing your submission you may either submit the files individually to T-Square
or you may submit an archive (zip or tar.gz only please) of the files (preferred). You can
create an archive by right clicking on files and selecting the appropriate compress option
on your system.

3. If you choose to submit an archive please don't zip up a folder with the files, only submit
an archive of the files we want. (See Deliverables).

4. Do not submit compiled files that is .class files for Java code and .o files for C code.
Only submit the files we ask for in the assignment.

5. Do not submit links to files. We will not grade assignments submitted this way as it is
easy to change the files after the submission period ends.

Syllabus Excerpt on Academic Misconduct

Academic misconduct is taken very seriously in this class.

Quizzes, timed labs and the final examination are individual work.

Homework assignments are collaborative, In addition many if not all homework
assignments will be evaluated via demo or code review. During this evaluation, you will
be expected to be able to explain every aspect of your submission. Homework
assignments will also be examined using electronic computer programs to find evidence
of unauthorized collaboration.

What is unauthorized collaboration? Each individual programming assignment should be
coded by you. You may work with others, but each student should be turning in their own
version of the assignment. Submissions that are essentially identical will receive a zero
and will be sent to the Dean of Students’ Office of Academic Integrity. Submissions that
are copies that have been superficially modified to conceal that they are copies are also
considered unauthorized collaboration.

You are expressly forbidden to supply a copy of your homework to another student via
electronic means. If you supply an electronic copy of your homework to another student
and they are charged with copying you will also be charged. This includes storing your
code on any site which would allow other parties to obtain your code such as but not
limited to public repositories, etc.

The content for this homework may not be too complex, but this assignment is a lot of work! It
takes several hours to write a game that meets the expected requirements, even for a seasoned
TA to do so. Do not wait until the day before this is due to start, or you will find that you don't
have enough time to design, implement, and bugtest your game by the deadline. It simply can't
be done in an afternoon.

Objective:

The goal of this assignment is to make a C program, a game. Your game should include
everything in the requirements and be written neatly and efficiently! You will implement the
main game loop in main.c, use a mylib.c file for your functions, but with declarations split into
a mylib.h, and we encourage you to add as many functions are needed to the file. It is also
optional for you to use other .c/.h files to organize your game logic if you wish, just make sure
you include them in submission and Makefile. Additionally, we want to make one point very
clear: please do not rehash lecture code in your game. This means that you are not allowed to
just slightly modify lecture code and call it a day. If we open your game and we see several
boxes flying in random directions, that will be a very bad sign, and you will not receive a very
pleasant grade. Also, please do not make Pong. However, you may use the mylib.h file provided
on T-Square if you would like a starting template for your own header.

General Requirements:

1. Unless you know what you're doing, you should implement your game in mode 3. If you use
any other modes (4 for double buffering, 0 for tiles, 1 or 2 for affine backgrounds) you will
be asked questions about how they work during the demo!

2. Images – You must use at least 2 separate images in your game, drawn with drawImage3.
The images' dimensions must be strictly smaller than 240x160. To do this you must also
implement drawImage3, which you already created in your previous homework and may
use that implementation as long as it works.

3. Your game must contain a fullscreen (240x160) image for the title screen, and a fullscreen
image for a win screen/game over screen, whichever applies.

4. You must have 2-dimensional movement of at least one entity (this entity must be
represented by an image from requirement #2). By 2-dimensional movement, we do not
mean one object moves vertically and another object moves horizontally. This single object
should be able to move along the x and y axis.

5. You must be able to reset the game to the title screen at any time using the select key. You
will not get credit for this requirement if there is any time during the game (win screen, game
over screen, during gameplay) where you can't return to the title screen by pressing select.

6. You must create a header (mylib.h), and put any #defines, function prototypes, typedefs, and
extern statements in this file. Remember that function and variable definitions should not go
in header files, just prototypes and extern variable declarations. You must write those
functions and declarations in mylib.c.

7. You must use at least one struct to represent an entity. The DMAREC struct from Bill's
lecture code will not count toward this requirement.

8. Button input should visibly and clearly affect the flow of the game.

9. You should implement some form of object collision, and it should be visibly accurate, given
the sizes of the entities colliding. For instance, just checking obj1.x = obj2.x & obj1.y =
obj2.y is not sufficient to accurately detect 2D collisions because they can then overlap to a
degree before a collision takes place.

10. You must implement the waitForVBlank function using the scanlinecounter macro.
11. Use text to show progression in your game, which updates in real-time. Use the example

files from lecture, or you can look into text systems more on Tonc:
http://www.coranac.com/tonc/text/text.htm

12. There must be no tearing in your game. Make your code as efficient as possible!
Although these aren't direct requirements for this homework, here are a couple of ways
to make your game faster to prevent tearing:
• Sync your game using waitForVBlank. It isn't even possible to implement the game

without tearing if you don't vsync it using a function like waitForVBlank.
• Reimplement your drawImage3 function with DMA instead of for loops to increase their

speed by about ~4x. If you use DMA, be prepared to explain how it works during demo.
• Only redraw what needs to change on the screen. The vblank period isn't nearly long

enough to redraw the whole screen before the next vdraw, even if you use DMA.
• If you're really ambitious, look into using mode 0. This would tremendously speed up any

game, but is significantly more difficult to implement and maintain, and won't be covered
in lecture. You'll have to read about it on TONC if you want to use it.

13. Include a readme.txt file with your submission that briefly explains the game and the
controls.

14. If any of these requirements don't apply to your chosen game, then you must either
change what game you are making or change the game itself so that it implements the
requirements.

http://www.coranac.com/tonc/text/text.htm

What Game to Make?

You may either create your own game the way you wish it to be as long as it covers the
requirements, or you can make games that have been made before with your own code.
However, your assignment must be yours entirely and not based on anyone else’s code. This
also means that you are not allowed to make slight modifications to lecture code and call it
your game. Games that are Bill’s code that have been slightly modified are subject to heavy
penalties. Here are some previous games that you can either create or use as inspiration:

Galaga: http://en.wikipedia.org/wiki/Galaga
Requirements:
1. Accurate, Efficient O(1) Rectangular Collision Detection implemented as a function.
2. Lives, you can use text to show them.
3. Game ends when all lives are lost. Level ends when all aliens are gone.
4. Different types of aliens – there should be one type of alien that rushes towards the ship and

attacks it
5. Smooth movement (aliens and player)

The World’s Hardest Game (Challenge our skill with your game):
 http://www.addictinggames.com/action-games/theworldshardestgame.jsp
Requirements:
1. Accurate, Efficient O(1) Rectangle Collision detection as a function.
2. Smooth motion for enemies and player (no jumping around)
3. Constriction to the boundaries of the level.
4. Enemies moving at different speeds and in different directions.
6. Sensible, repeating patterns of enemy motion
7. Enemies and the Player represented by structs

Frogger: http://en.wikipedia.org/wiki/Frogger
Requirements:
1. The Frog and the logs/lily pads must be represented by structs internally.
2. O(1) collision detection with any object. If the frog collides with traffic, it dies. If it does

not land on a lilypad/log, then it also dies. The materials in the river “lily pads/logs”
must move the froggy along with them.

3. There is a time limit in which the frog must get to his home. If time expires, then the
frog also dies (hint: There are about 60 vblanks per second.)

4. Once a Froggy occupies a home, another frog cannot occupy that home.
5. The player must have a set amount of lives they can lose before losing. The number of

lives must be displayed to the user. The game is over when all of the lives are lost. The
game is won if all frogs get to their homes.

These are just some suggestions to get you on the right track with making your game. If you are
having any trouble deciding or you have an idea you would like to check, please consult with the
TAs first.

http://en.wikipedia.org/wiki/Frogger
http://www.addictinggames.com/action-games/theworldshardestgame.jsp
http://en.wikipedia.org/wiki/Galaga

Images

As a requirement you must use at least 2 images in your game and you must draw them all using
drawImage3. Your bmptoc program should be able to generate the files necessary to use the
images, but in the case that your submission didn't work or in case you would like the
convenience of not having to first convert images to bmptoc's specific BMP format, we have
provided a tool that will make this task easier for you.

CS2110ImageTools.jar – available on T-Square in Resources/GBA

CS2110ImageTools.jar reads in, converts, and exports an image file into a format the GBA can
read – .c/.h files! It also supports resizing the images before they are exported.

You may run the program from terminal in the directory where you downloaded it like this:
java -jar CS2110ImageTools.jar

CS2110ImageTools.jar will give you a graphical interface to load image files and save their
converted files. The output of this program will be a .c file and a .h file. In your game you will
#include the header file. It contains an extern statement so any file that includes it will be able to
see the declarations given in the .c file CS2110ImageTools.jar exported. Inside the exported .c
file is a 1D array of colors which you can use to draw to the screen.

(example on next page)

Example

For instance, take this 4x3 image courtesy of GIMP:

When this file is exported here is what the array will look like:

const unsigned short example[12] =
{

// first row red, green, blue, green
0x001f, 0x03e0, 0x7c00, 0x03e0,
// white, red, blue, red
0x7fff,0x001f, 0x7c00, 0x001f,
//white, blue, red, blue
0x7fff, 0x7c00, 0x001f, 0x7c00,

};

The number of entries in this 1D array is 12 which is 4 times 3. Each row from the image is
stored right after the other. So if you wanted to access coordinate (row = 1, col = 3) then you
should get the value at index 7 from this array which is red.

drawImage3

In your game you must use drawImage3.

The prototype and parameters for drawImage3 are as follows:

/* drawimage3
 * A function that will draw an arbitrary sized image
 * onto the screen.
 * @param r row to draw the image
 * @param c column to draw the image
 * @param width width of the image
 * @param height height of the image
 * @param image Pointer to the first element of the image.
 */
void drawImage3(int r, int c, int width, int height, const

u16* image)
{
 // @todo implement :)
}

Protip: If your implementation of this function does not use all of the parameters that are passed
in then you're probably doing it wrong.

C coding conventions:
1. Do not jam all of your code into one function (i.e. the main function)
2. Split your code into multiple files (have all of your game logic in your main file, library

functions in mylib.c with declarations in mylib.h, game specific functions in game.c)
3. Comment your code, comment what each function does. The better your code is the better

your grade!

Warnings
1. Do not use floats or doubles in your code. Doing so will SLOW your code down

GREATLY. The ARM7 processor the GBA uses does not have a Floating Point Unit
which means floating point operations are SLOW and are done in software, not
hardware. If you do need such things then you should look into fixed point math,
covered in Advanced Lab 2.

2. Only call waitForVBlank once per iteration of your while/game loop
3. Keep your code efficient. If an O(1) solution exists to an algorithm and you are using an

O(n^2) algorithm then that’s bad (for larger values of n)! Contrary to this only worry
about efficiency if your game is showing signs of tearing!

I STRONGLY ADVISE that you go ABOVE AND BEYOND on this homework. PLEASE do
not just clutter your screen with squares that run around with no meaning in life – such
submissions will lose points. Make some catchy animations, or cut scenes! These games are

always fun to show off after the class, you can even download emulators on your phone to play
them. Also, remember that your homework will be partially graded on its creative
properties and work ethic. You are much more likely to make your TAs very happy and to have
a better demo/grade if you go above and beyond what is required.

You may research the GBA Hardware on your own. You can read Tonc, however you may not
copy large swaths of code, only use it as a reference. The author assumes you are using his gba
libraries, which you are not and may not.

Here are the inputs from the GameBoy based on the keyboard for the default emulator vbam:

GameBoy	Keyboard
Start | Enter
Select | Backspace
A | Z
B | X
L | A
R | S
Left | Left Arrow
Right | Right Arrow
Up | Up Arrow
Down | Down Arrow

Holding the space bar will make the emulator run faster. This might be useful in testing, but the
player should never have to hold down space bar for the game to run properly and furthermore
there is no space bar on the actual GBA.

You can learn more about button inputs on this site: http://www.coranac.com/tonc/text/keys.htm

If you want to add randomness to your game then look up the function rand in the man pages.
Type man 3 rand in a terminal.

Deliverables

main.c
mylib.c
mylib.h
Makefile (your modified version)
readme.txt
and any other files that you chose to implement

Or an archive containing ONLY these files and not a folder that contains these files. DO NOT
submit .o files as these are the compiled versions of your .c files, you can type ‘make clean’ to
remove those files.

http://www.coranac.com/tonc/text/keys.htm

Note: Make sure your code compiles with the command:

make vba

Make sure to double check that your program compiles, as you will receive a zero (0) if your
homework does not compile, and it must compile using the standard CS 2110 flags listed in the
syllabus:

-std=c99 -Wall -pedantic -Wextra -Werror -O2

As long as you only change the OFILES/HFILES lines in the provided Makefile, then you
should be fine with those above flags. Good luck, and have fun!

	Rules and Regulations

