
Inferno DS: Inferno port to the Nintendo DS

Salva Peiró
Valencia, Spain

saoret.one@gmail.com

October 12, 2008

Abstract

The Inferno DS port began in 2007 as a one-man Google Summer of Code project, to
make Inferno available on a standard, cheap, networked device with graphics and audio.
The GSoC project attracted a small group of developers that is completing the port, to
make the device fully usable for application development. This paper describes the current
status of the port. It reviews the background and the motivation for the work, provides
a DS hardware overview, and discusses the kernel development process, focusing on the
setup and development of Dis applications running on the DS. There is plenty of scope
for futher work. We hope to encourage others to contribute to the project.

1. Background

The DS [1] native port of Inferno [2] was started by Noah Evans for GSoC 2007 [3]. At the the
end of GSoC the port was starting to be usable under the no$gba [4] emulator, enough that
it was possible to interact with Inferno's window manager wm(1) 1 using the emulated touch
screen. Inferno also booted and ran on a real DS, but the touch screen did not work. In spite of
its limitations the port provided enough basic functionality to encourage further development.
The GSoC project sparked the interest of a small group of enthusiasts to �nish the port and
begin work on new applications suitable for the platform. It is an Open Source project, hosted
on Google Code, and supported by discussions in Google Groups and on IRC.

1.1. Motivation

The current project shares the motivation stated by Noah Evans on his GSoC 2007 application
[3]: by using cheap and easily accessible hardware, native Inferno on the DS would show a
wide range of users the power and possibilities of the Inferno and Plan 9 approach to building
distributed systems. On other platforms, instead of a native port, we might consider hosting
Inferno under an existing system, but we found that emu(1) on DSLinux [5] was not viable as
when running with graphics the program crashed due to out of memory errors. There was thus
increased curiosity about the advantages of a native port for DS software development. For
instance, a proper operating system would overcome limitations of some homebrew programs
for the DS, such as no multi-tasking, and it would give the bene�ts of having a coherent
system with a standard set of tools. Furthermore, it would provide a �real� testbed for Limbo
applications, including those developed in the inferno-lab [6]. The DS is particularly interesting
as an Inferno target because it provides WiFi networking, allowing us to have fun with multi-user
games and applications, including Voice-over-IP and jukebox programs using its audio input and
output.

2. DS Overview

The native port had to address unusual aspects of the Nintendo DS hardware, so some knowl-
edge of that is helpful. What follows is a small overview of the DS hardware organized in three
subsections: the system processors, its inter-communication mechanisms, and last the built-in
devices (and expansions).

1 the notation page(section), refers to Inferno manual pages [14]

2.1. Processors

The DS has two 32-bit ARM [7] processors: an ARM946E-S running at 66MHz that is in charge
of the video and performs the main computations; and an ARM7TDMI at 33MHz that acts as
a slave to deal with the remaining devices, including wireless, audio, touch screen, and power
management.

The system is shipped with the following internal memory:

• 4096KB Main ARM9 RAM

• 96KB Main ARM7 WRAM (64Kb + 32K mappable to NDS7 or NDS9)

• 60KB TCM/Cache (TCM: 16K Data, 32K Code) (Cache: 4K Data, 8K Code)

• 656KB Video RAM (usable as BG/OBJ/2D/3D/Palette/Texture/WRAM memory)

• 256KB Firmware FLASH (512KB in iQue variant)

• 36KB BIOS ROM (4K NDS9, 16K NDS7, 16K GBA)

For more details see [8][GBATEK, NDS Overview].

2.2. Communication

The two processors in the DS can communicate using combinations of the following methods:

• Shared memory: The 4Mb of ARM9 RAM starting at 0x02000000 can be shared by both
processors. It can be con�gured so that one cpu can be given priority over the other when
they access the memory concurrently.

• Hardware FIFOs: The DS FIFO controller allows the processors to exchange 32 bit values.
It allows full-duplex communication, where each cpu has a destination queue that stores
the values sent by the other cpu, and interrupts notify the appropriate cpu about queue
activity.

This mechanism is crucial as it allows sending messages to request actions. This is used
for example to read and write the real-time clock, obtain the touch coordinates, perform
WiFi tasks, and request audio samples to be played or recorded to the ARM7 cpu.

• Sync interrupt: The Sync IRQ is a simple mechanism that allows one cpu (`local') to
generate an IRQ to the other (`remote') cpu. We can use that to emulate WiFi receiver
interrupts: when the ARM7 detects when a packet has been received it informs the ARM9
using Sync.

Given that accessing shared memory generates wait states to the cpu with less priority, it must
be used with care. It works well in combination with FIFOs, by passing FIFO messages with
pointers to shared memory. This is analogous to passing parameters by value or by reference.

See [8][GBATEK, DS Inter Process Communication (IPC)] for a more detailed description.

2.3. Devices

The Nintendo DS has the following built-in devices:

• Video: There are two 3-inch backlit LCD screens, each 256x192 pixels, with 18bit color
depth. Each screen has a dedicated 2D video engine, and there is one 3D video engine
that can be assigned to either screen.

• Sound: There are 16 sound channels (16x PCM8/PCM16/IMA-ADPCM, 6x PSG-Wave,
2x PSG-Noise). Output can be directed either to built-in stereo speakers, or to a head-
phone socket. Input can come either from a built-in microphone, or a microphone socket.

• Controls: A user interacts with the DS through a gamepad and a touch screen. The
gamepad provides 4 direction keys plus 8 buttons, and the touch screen on the lower
LCD screen can be used as a pointing device.

• Networking: WiFi IEEE802.11b wireless networking is provided by the RF2958 (aka
RF9008) chip from RFMD. The main drawback is that there is no documentation from
the manufacturer about its interfacing and programming. All that is known was reverse
engineered by other projects. That information is gathered in [8][GBATEK, DS Wireless
Communications] and also in the dswi� project and DSLinux [5]

• Specials: Additional devices include: a built-in real time clock, power managment de-
vice, hardware divide and square root functions and the ARM CP15 System Control
Coprocessor (controlling cache, tcm, pu, bist, etc.)

• External Memory: There are two available slots: NDS slot (slot-1) and GBA slot (slot-2),
which are the preferred way to plug in expansion cards and other devices. The slots are
commonly used to provide storage on SD/TF cards. There are, however, other devices
such as Dserial, CPLDStarter or Xport [9], which provide UART, MIDI, USB and
standard digital I/O interfaces together with CPLDs or FPGAs.

see [8][GBATEK, NDS Hardware Programming].

3. DS Port

This section describes the idiosyncrasies of the DS port, in particular those related to the setup,
kernel and application development.

3.1. Environment

The development environment is the default shipped with Inferno. The compiler used is
5{a,c,l}, which forms part of the Inferno and Plan 9 compiler suite [11]. It is used to build
the ARM [12] binaries for both the ARM7 and ARM9 cpus, together with the companion tools:
mk, acid, ar, nm, size, etc. which are used for building, debugging and examining the
resulting binaries.

The only special tool required is ndstool [10] which generates a bootable image to be launched
by the NDS loader running on the DS. The image contains everything required to describe how
to boot the code, which includes the ARM7 and ARM9 binaries and their corresponding load
addresses and entrypoints.

3.2. DS kernels

The Inferno DS port follows the usual pattern for a port of native Inferno to a new platform
for an already-supported processor. Much of the code of the Inferno native kernel is platform-
independent, including the IP stack. The Dis interpreter and built-in Limbo modules are also
platform-independent. That platform-independent code only needs to be compiled, which is
done automatically by a mkfile. A relatively small amount of platform-speci�c code must be
written. The DS port shares much of the ARM-speci�c code with the other ARM ports of
Inferno, including the `on the �y' compiler (JIT) for Dis for the ARM processor. There are
existing ports of Inferno to the ARM, which have been used both as a source of ideas and
code. Inferno's earlier port to the iPAQ is the closest existing platform to the DS: both have
touch screens, storage, audio and wireless networking, The underlying hardware is completely
di�erent, however, and the DS often looks like a small brother of the iPAQ: a slower 66 Mhz
CPU clock, only 4 Mb of available RAM, small LCD displays and reduced wireless capabilities.

One of the �rst things to address in the port was how to use the two processors. The ARM9
cpu has 4 Mb of RAM, which permits it to run an Inferno kernel, but the slower ARM7 has only
access to 64 Kb or EWRAM (exclusive RAM). Given this memory limitation the ARM7 cannot
sensibly run an Inferno kernel. Instead it runs specialised code that manages the hardware
devices assigned to the ARM7. The ARM7 kernel is interrupt driven. During its initialisation
phase, it sets device interrupts, and con�gures the buttons, touch screen, FIFOs, and the devices
on the SPI. It then switches to a low-power mode, where it endlessly waits for interrupts to
wake it. The kernel currently has 2,630 lines of C code, over half of that in its WiFi interface,
and 70 lines of assembly code.

The ARM9 runs the full Inferno kernel, and provides devices like pointer(3), ether(3), rtc(3),
audio(3), etc. About 6,500 lines of C code and 310 lines of assembly code is speci�c to
either the ARM processor or the DS platform. Most of that code is in device drivers. The
implementation of the device drivers is unusual: because of the division of work between the
processors, the drivers must access and control many of the physical devices via the ARM7,
and we discuss that next.

3.3. Communication: FIFOs IPC

To avoid con�icts that would arise if sharing the hardware devices between cpus, each device is
assigned exclusively to one cpu or the other. For example, the Serial Peripheral Interface (SPI)
is owned by the ARM7. Many of the peripherals are accessed through SPI, including touch
screen, WiFi, rtc, �rmware, power management and audio. The LCD hardware by contrast is
owned by the ARM9. Consequently, the ARM9 cannot directly drive the audio device, nor can
the ARM7 directly display on the screen for debugging.

To overcome this, we use the interprocessor communication mechanisms listed above � FIFOs
and shared memory � to implement a simple messaging protocol that allows one cpu to access
devices owned by the other. It is a Remote Procedure Call protocol: each message is associated
at the receiving cpu with a function that performs the work requested by the message. For
simplicity the function and its arguments are encoded into a 32 bit message as follows:

msg[32] := type[2] | subtype[4] | data[26], where
field[n] refers to a field of n bits of length

type[2] := 00: System, 01: Wifi, 10: Audio, 11: reserved.
subtype[4] := 2^4 = 16 type specific sub-messages.
data[26] := data/parameters field of the message.

The encoding was chosen to have a notation that was easy to read in the calling code, yet
accommodate all the data to be exchanged between the cpus:

type[2] is used to have messages organised in 4 bit types: System, Wi�, Audio and a Reserved
type.

subtype[4] is used to further qualify the message type.

For example, given message type[2] = Wifi actions to be performed include initialising
the WiFi controller, setting the WiFi authentication parameters, and preparing to send
or receive a packet. Those and the other operations required can all be encoded using
the 16 available message subtypes.

data[26] the data �eld is just big enough to allow passing of pointers into the 4Mbyte shared
memory. (This will have to be revised when using memory expansions @ 0x08000000, 16
Mb)

The protocol has a simple implementation. For instance, here is the low-level non-blocking
FIFO put function:

int
nbfifoput(ulong cmd, ulong data)
{

if(FIFOREG->ctl & FifoTfull)
return 0;

FIFOREG->send = (data<<Fcmdlen|cmd);
return 1;

}

Here is an example of its use, extracted from devrtc.c, executed by the ARM9 side to read the
ARM7 RTC:

ulong secs;
...
nbfifoput(F9TSystem|F9Sysrrtc, (ulong)&secs);

Because the hardware interface to the FIFO is the same for each processor, similar code can
be used by the the ARM7 in the other direction, for instance to send a string to the ARM9 to
print on the LCD. (The code is not identical because the ARM9 kernel environment includes
scheduling.)

The interrupt-driven part of the FIFO driver is also straightforward. An extract is shown below
to give the �avour:

static void
fifotxintr(Ureg*, void*)
{

if(FIFOREG->ctl & FifoTfull)
return;

wakeup(&putr);
intrclear(FSENDbit, 0);

}

static void
fiforxintr(Ureg*, void*)
{

ulong v;
while(!(FIFOREG->ctl & FifoRempty)) {

v = FIFOREG->recv;
fiforecv(v);

}
intrclear(FRECVbit, 0);

}

static void
fifoinit(void)
{

FIFOREG->ctl = (FifoTirq|FifoRirq|Fifoenable|FifoTflush);
intrenable(0, FSENDbit, fifotxintr, nil, "txintr");
intrenable(0, FRECVbit, fiforxintr, nil, "rxintr");

}

Here fiforxintr is executed when an message receive IRQ is triggered, then the FIFO is
examined to read the message, which is passed to fiforecv which knows the encoding of the
messages, and invokes the corresponding function associated with each message.

3.4. Graphics

The DS has two LCD screens, but the draw(3) device currently provides access only to the lower
screen, because it is the only touch screen in the DS, and mapping touch screen coordinates to
screen coordinates (pixels) makes obvious sense to a user: touching the screen refers to that
point on the screen.

The DS port could also draw on the upper screen, but it will take some experimentation
to determine how to best use both screens so the result still makes sense to both user and
programmer. For example, although Limbo's draw(2) does not require that everything drawn
be accessible through /dev/pointer, existing interactive applications e�ectively assume that.

One interesting alternative is to use the touch screen coordinates as relative instead of absolute:
this would provide access to both screens, and visual feedback can be provided by a software
cursor.

3.5. Memory

Having 4 Mb of RAM limits the programs that can be run. To overcome this memory limitation,
it is possible to use slot-2 memory expansions; the expansions can add between 8 Mb and 32

Mb of RAM, Unfortunately, owing to the slot-2 bus width it can only perform 32-bit and 16-bit
writes; when an 8-bit write is performed it results in garbage written to memory.

This problem is circumvented in DSLinux [5] by modifying the compiler to replace strb in-
structions with swpb, with appropriate changes to surrounding code. We might be able to do
the same in the Inferno loader 5l (since that generates the �nal ARM code), but failing that,
make a similar change to the compiler 5c.

3.6. DLDI

The Dynamically Linked Disc Interface (DLDI)[16], is a widespread way of accessing storage
SD/TF cards. It provides the IO functions required to access storage independently of which
boot card is being used. When a file.nds �le is booted, the boot loader auto-patches the
DLDI header contained inside the file.file with the speci�c IO functions for this card.

This has been partially implemented in the DS port, where the devdldi.c �le provides a
suitable DLDIhdr, which is properly recognised and patched by the boot loader.

The problem with this approach is that the DLDI patched code (arm-elf) contains instructions
which modify a critical register without restoring it afterwards, which would panic the kernel.

For that reason, at this moment the DLDIhdr is only used to detect the card type and then
select one of a set of compiled-in drivers, one for each type of card.

3.7. Application

As usual for Inferno ports, the existing Dis �les for applications run unchanged (subject to
available resources). At the application level the DS has some features that make it interesting.

User input comes from various buttons, and the touch screen. Graphical output is on two small
LCD displays. As noted above, having two displays but only one with a touch screen presents a
di�erent graphical interface from the one that applications (and users) expect. This is currently
the object of experimentation in the inferno-lab [6].

Whichever approach is chosen, being able to run Limbo applications in the full Inferno environ-
ment on the DS already opens the �eld for interesting applications, which combine graphics,
touch, networking and audio. This can include games, VoIP, music, MIDI synths, and other
more common uses, such as connecting to remote systems with cpu(1), and managing them
from the DS, or accessing remote resources using the styx(5) protocol.

3.8. Setting up the development environment

It is easy to set up Inferno to run on the Nintendo DS. An Inferno kernel that can be distributed
as an .nds image is available for download from the Inferno DS project site [1]. A standard
Inferno distribution is placed on an SD/TF card, and the .nds kernel image can be copied to
an SD/TF card, to be booted by the NDS loader.

This kernel provides access to the underlying hardware through Inferno's normal device inter-
face, namely through a �le system interface that is used by applications to access most kernel
services. The kernel includes the normal Inferno interfaces for draw(3), pointer(3), ether(3)
and audio(3), and a DS-speci�c devdldi that provides storage access to SD/TF cards.

With all this, the development of applications consists of the following steps:

1. setup Inferno emu on a development host: where the applications can be coded, compiled
and tested, see [13] for more details.

2. test applications on a DS emulator (optional): like no$gba [4] or desmume.

3. transfer applications (.dis �les) to SD/TF card: to be launched after booting the Inferno
DS kernel.

4. Conclusions

The main conclusion extracted during the development of the port has been how the careful
design and implementation of the whole Inferno system have made the task of developing this
port easier. Most of the kernel code is portable, including the whole of the Dis virtual machine,
and just needs to be compiled. The platform-speci�c kernel code for any native port is fairly

small (on the order of a few thousand lines). There was already existing support for the ARM
processor, and a few sample ports to ARM platforms to act as models. The device driver
interface is simple and modular.

This has had also an e�ect on the tasks of locating and �xing errors, and introducing new
functionality like input, storage, networking and audio which have become easier. Emulators
are still of great help to save test time.

The bene�ts of the Inferno design [2] will be also noticed when developing Limbo applications
for the DS, as this area has been less used and tested during the development of the port.

5. Future work

This project is work in progress, and signi�cant things remain to do. There are undoubtedly
places where a simple-minded implementation just to get things going needs to be redone. For
example, the graphics implementation is being extended to allow Inferno to take advantage of
both LCD screens, and the audio driver is being reworked to improve playing and recording
quality.

One big task is to �nish and test the wireless networking code. The DS will be much more
interesting once it can communicate with other devices, because Inferno comes into its own in
a networked environment. That will allow it to access �le systems and devices provided by an
emu(1) instance running hosted elsewhere. We can also speed development by booting remote
kernels. The wireless provides only WEP and open modes at 2.0 Mbps. Once the WiFi code
is fully working, it will be interesting to see how the relatively low data rate (in current terms)
a�ects the use of the styx(5) protocol to access remote �lesystems.

As low-level device support is completed, e�ort will shift from the kernel side to the applications
side. Indeed, that is already happening with the inferno-lab [6] experiments with the Mux
interface and with the QUONG/HexInput [15] keyboard to ease interaction with the system
through the touch screen.

Please join in! [1]

References

[1] Noah Evans, Salva Peiró, Mechiel Lukkien �Inferno DS: Native Inferno Kernel for the
Nintendo DS�. http://code.google.com/p/inferno-ds/.

[2] Sean Dorward, Rob Pike, David Leo Presotto, Dennis M. Ritchie, Howard Trickey, Phil Win-
terbottom �The Inferno Operating System�. Computing Science Research Center, Lucent
Technologies, Bell Labs, Murray Hill, New Jersey USA http://www.vitanuova.com/inferno.
http://code.google.com/p/inferno-os/.

[3] Noah Evans, mentored by Charles Forsyth, �Inferno Port to the Nintendo DS�. Google
Summer of Code 2007, http://code.google.com/soc/2007/p9/about.html.

[4] Martin Korth, �no$gba emulator debugger version�. http://nocash.emubase.de/gba-
dev.htm.

[5] Pepsiman, Amadeus and others, �DSLinux: port of uCLinux to the Nintendo DS�.
http://www.dslinux.org.

[6] Caerwyn Jones & co, �Inferno Programmers Notebook�. http://caerwyn.com/ipn,
http://code.google.com/p/inferno-lab

[7] ARM (Advanced Risc Machines), �ARM7TDMI (rev r4p3) Technical Reference Manual�.
ARM Limited, http://www.arm.com/documentation/ARMProcessorCores.

[8] Martin Korth, �GBATEK: Gameboy Advance / Nintendo DS Technical Info�.
http://nocash.emubase.de/gbatek.txt. http://nocash.emubase.de/gbatek.htm.

[9] Charmed Labs, �Xport�. http://www.drunkencoders.org/reviews.php.

[10] DarkFader, natrium42, WinterMute, �ndstool Devkitpro: toolchains for homebrew game
development�. http://www.devkitpro.org/

[11] Ken Thompson, �Plan 9 C Compilers�. Bell Laboratories, Murray Hill, New Jersey 07974,
USA. http://plan9.bell-labs.com/sys/doc/compiler.html.

http://code.google.com/p/inferno-ds/
http://www.vitanuova.com/inferno
http://code.google.com/p/inferno-os/
http://code.google.com/soc/2007/p9/about.html
http://nocash.emubase.de/gba-dev.htm
http://nocash.emubase.de/gba-dev.htm
http://www.dslinux.org
http://caerwyn.com/ipn
http://code.google.com/p/inferno-lab
http://www.arm.com/documentation/ARMProcessorCores
http://nocash.emubase.de/gbatek.txt
http://nocash.emubase.de/gbatek.htm
http://www.drunkencoders.org/reviews.php
http://www.devkitpro.org/
http://plan9.bell-labs.com/sys/doc/compiler.html

[12] David Seal, �The ARM Architecture Reference Manual�, 2nd edition. Addison-Wesley
Longman Publishing Co. http://www.arm.com/documentation/books.html.

[13] Phillip Stanley-Marbell, �Inferno Programming with Limbo�. John Wiley & Sons 2003,
http://www.gemusehaken.org/ipwl/.

[14] �The Inferno Manual�. http://www.vitanuova.com/inferno/man/.

[15] http://www.strout.net/info/ideas/hexinput.html.

[16] Michael "Chishm" Chisholm, Dynamically Linked Disc Interface.
http://dldi.drunkencoders.com/index.php.

http://www.arm.com/documentation/books.html
http://www.gemusehaken.org/ipwl/
http://www.vitanuova.com/inferno/man/
http://www.strout.net/info/ideas/hexinput.html
http://dldi.drunkencoders.com/index.php

	Background
	Motivation

	DS Overview
	Processors
	Communication
	Devices

	DS Port
	Environment
	DS kernels
	Communication: FIFOs IPC
	Graphics
	Memory
	DLDI
	Application
	Setting up the development environment

	Conclusions
	Future work

